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INTRODUCTION 

These notes provide a brief historical account of the discovery of the laws governing the 

motion of the planets about the Sun.  These laws; deduced by Johannes Kepler (1571–

1630) after years of laborious calculations using planetary positions observed by Tycho 

Brahe (1546–1601).  Isaac Newton (1642–1727) showed Kepler's Laws to be outcomes of 

his laws of motion and universal gravitation.  These notes show how Newton's laws give an 

equation of motion that describes the orbits of the planets about the Sun, moons about 

planets, the orbits of artificial satellites of the Earth and the motion of ballistic missiles 

and inter-planetary flight.  This equation of motion, given in the form of a second order, 

non-linear, vector differential equation describes the N-body problem of astrodynamics.  It 

does not have a direct solution, but certain physical realities (e.g., relative masses of a 

satellite and the Earth, small orbit perturbing effects of the Sun, Moon and planets, etc.) 

allow simplifying assumptions when dealing with Earth-orbiting satellites.  So, in practice, 

we deal with the two-body problem (Earth–Satellite) and its differential equation of 

motion – a much simpler problem to solve. 

The solution of the two-body problem in these notes – formed from Newton's equations 

and first solved by Newton – reveals that (i) satellite orbits are elliptical, (ii) the Earth-

satellite radius vector sweeps out areas at a constant rate, and (iii) the square of the 

period of an orbit is proportional to the cube of the mean orbital distance.  Thus, these 

notes provide a demonstration that Kepler's Laws are an outcome of Newton's laws of 

motion and universal gravitation.  The solution of the two-body problem in these notes 

relies heavily upon the use and manipulation of vectors, and as an aid to understanding a 

short Appendix on vectors is included. 
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In the derivations of the parameters of satellite orbits, these notes closely follow the text: 

Fundamentals of Astrodynamics, by Roger R. Bate, Donald D. Mueller and Jerry E. White 

(Dover Publications, Inc., New York, 1971), professors at the Department of Astronautics 

and Computer Science, United States Air Force Academy.  Several students of these 

professors were astronauts in NASA's Apollo mission to the Moon. 

These notes also contain definitions and explanations of coordinate systems pertinent to 

planetary and satellite orbital mechanics and a description of the Keplerian orbital 

elements.  These orbital elements allow the computation of the instantaneous position of a 

satellite in its orbit around the Earth. 

 

KEPLER'S PLANETARY LAWS 

Johannes Kepler was born in Weil der Stadt in Württemburg (now part of Germany) in 

December 1571 and was a gifted young child.  A scholarship, reserved for promising male 

children of limited means, enabled him to attend high school; later transferring to a 

monastic Latin school and then to the University of Tübingen where he studied under 

Michael Mästlin – one of the earliest advocates of the Copernican1 system.  After 

graduation he took up a post in mathematics and astronomy at the Protestant school in 

Graz, Austria where he embarked on his life-long search for a geometrical explanation of 

the motion of the planets in a Sun-centred Copernican system.  Astronomical 

measurements of planetary positions were vital to Kepler's studies, and fortuitously, after 

being ordered to leave Graz by the Catholic archduke for his Lutheran beliefs, he was 

invited to continue his research in a working collaboration with the wealthy Danish 

astronomer Tycho Brahe at his castle in Prague, whose patron was Emperor Rudolph II.  

Their relationship was strained; the aristocratic Tycho possessed the most modern and 

accurate instruments and was an accomplished observer who had accumulated extensive 

planetary observations.  But he lacked the mathematical skills to interpret them and 

treated Kepler as his assistant.  Kepler, on the other hand, was a skilled mathematician 

but lacked data to work with.   

                                     
1 The heliocentric system proposed in 1543 by Nicholas Copernicus (1473–1543).  This Sun-centred system 

was in opposition to the prevailing Christian dogma of an Earth-centred universe where the apparent 

irregular motion of the planets was explained by a complicated set of epicycles known as Ptolemaic theory. 
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He was also young, newly married and poor and relying on the older Tycho for his 

livelihood, and he also wished to be regarded as Tycho's equal; not just an assistant.  To 

ease Kepler's frustration, Tycho assigned him to study the orbit of Mars, which appeared 

to be the least circular of the observed planetary orbits.  Kepler reduced Tycho's geocentric 

angular observations of Mars to a set of heliocentric Mars-Sun distances.  As part of this 

reduction process, Kepler established that the path of Mars lay in a plane that passed 

through the Sun.  Kepler, using only a straightedge and compass, then proceeded to 

construct possible orbital positions using the traditional mechanism of deferent, epicycle 

and eccentric2.  His constructions lead to an unexpected curve – an ellipse – and in 1609 he 

published his results and his two laws on planetary motion in Astronomia Nova (New 

Astronomy): 

• Law 1 (the Ellipse Law) – the orbital path of a planet is an ellipse, with the Sun at 

a focus. 
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Figure 1:  Kepler's first law 

 Figure 1 shows a planet P in its elliptical orbit around the Sun S at a focus of the 

ellipse whose semi-major and semi-minor axes are a and b respectively.  l is the 

semi-latus rectum of the orbit, and perihelion is the point on the orbit when the 

planet is closest to the Sun.  The distance r from the Sun to the planet is given by 

the equation 

 
( )21

1 cos 1 cos
a e lr

e eθ θ

−
= =

+ +
 (1) 

                                     
2 An eccentric is a circle (or circular orbit) whose centre is offset from the Sun; an epicycle is a circle whose 

centre moves around another circle known as the deferent.  In Ptolemaic theory, planets moved around 

epicycles that moved around deferents or eccentrics. 
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 where θ , known as the true anomaly is the angle between the radius r SP=  and 

the major axis, measured positive anticlockwise from perihelion, and e is the 

eccentricity of the orbital ellipse and 

 
2 2

2
2

a be
a
−

=  (2) 

• Law 2 (the Area Law) – the line joining the planet to the Sun sweeps out equal 

areas in equal times. 
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Figure 2:  Kepler's second law 

 Figure 2 shows 1A , the area swept out by the radius vector (the line SP) as the 

planet moves from 1P  to 2P  in time 1t  and the area 2A  as the planet moves from 3P  

to 4P  in time 2t .  If 1 2t t=  then 1 2A A=  and the planet is moving faster from 1P  to 

2P  than it is from 3P  to 4P .  Kepler's second law means that the sectorial area 

velocity is constant, or 

 constantdA
dt

=  (3) 

 In polar coordinates ,r θ  the sector of a circle of radius r is 21
2A r θ=  and a 

differentially small element of area 21
2dA r dθ θ=  thus equation (3) can be written as 

 21
2

dA dr
dt dt

θ
=  (4) 

 or 

 2 dr C
dt
θ
=  (5) 

 where the constant C denotes a doubled-area. 
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Between 1609 and 1618, Kepler satisfied himself that the orbits of the six primary planets 

were ellipses with the Sun at one focus and in 1618 published further results of his work 

and his third law in Harmonice Mundi (Harmonies of the World) a series of five books 

• Law 3 (the Period Law) – the square of the period of a planet is proportional to the 

cube of its mean distance from the Sun. 

 Kepler's third law can be expressed mathematically as 

 
( )
( )

2 2

3 3

orbital period
 constant

semi-major axis
T
a

= =  (6) 

 

These three laws are the basis of celestial mechanics and Kepler, whilst having no idea of 

the forces governing the motion of the planets, proved that the planets have a certain 

regularity of motion and that a force is associated with the Sun.  In 1627, Kepler published 

the Rudolphine Tables of planetary motion, named for his benefactor Emperor Rudolph II.  

These astronomical tables, based on Tycho's observations and Kepler's laws, were the most 

accurate yet produced and gave astronomy a new mathematical precision. 

It is interesting to note that Kepler's mathematical analysis was completed without the aid 

of logarithms, which were not invented until 1614, by Napier (1550–1617) and that 

Tycho's observations had all been made with the naked eye, before the first use of the 

telescope in astronomy in 1610 by Galileo (1564–1642). 

Whilst Kepler did not discover the force that caused planetary motion, he did discover 

that their motions constituted a system, and it was his Third Law that led Isaac Newton 

to discover the law of universal gravitation some 50 years later. 

 

NEWTON'S LAWS 

Isaac Newton was born in the English industrial town of Woolsthorpe, Lincolnshire, on 

Christmas Day of 1642 – the year that Galileo died.  He was not expected to live long, due 

to his premature birth, and he later described himself as being so small at birth he could 

fit in a quart pot.  Newton's father died before his birth and his mother remarried, placing 

young Isaac in the care of his grandmother.  Newton as a young child was an 

unremarkable student, but in his teenage years he demonstrated some intellectual promise 

and curiosity and began preparing himself for university.   
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In 1661 he attended Trinity College at Cambridge University, where his uncle had been a 

student, and part-way through his studies in 1665, the university was closed because of the 

bubonic plague.  Newton returned to Lincolnshire and in a period, that Newton later called 

his annus mirabilis (miraculous year), he formulated his laws of motion and gravitation.  

When the university reopened in 1667, Newton returned to his studies and was greatly 

influenced by Isaac Barrow who had been named the Lucasian3 Professor of Mathematics.  

Barrow recognised Newton's extraordinary mathematical talents and when he resigned his 

position in 1669, he nominated Newton as his successor. 

Newton's first studies as Lucasian Professor were on optics and light where he 

demonstrated that white light was composed of a spectrum of colours that could be seen 

when light was refracted by a prism.  He proposed a theory of light composed of minute 

particles, which was a contradiction of the theories of Robert Hooke4 (1635-1702), who 

contended that light travelling in waves.  Hooke challenged Newton to justify his theories 

on light, and thus began a lifelong feud with Hooke.  Newton never missed an opportunity 

to criticise Hooke's work and refused to publish his book Optics until after Hooke's death. 

Early in his tenure as Lucasian Professor, Newton fell into a bitter dispute with supporters 

of the German mathematician Gottfried Leibniz (1646–1716) over claims of priority to the 

invention of calculus.  The two had arrived at similar mathematical principles but Leibniz 

published his results first, and Newton's supporters claimed he had seen Newton's papers 

some years before.  This bitter dispute did not end until Leibniz's death.   

As an undergraduate, Newton had begun formulating theories about motion, and had set 

out to discover the cause of the planets' elliptical motion – a fact that Kepler had 

discovered 50 years before.  Ironically, it was an exchange of letters with Hooke, in 1679-

80, which rekindled his interest in the subject.  Hooke contended that the planets were 

diverted from their straight line paths by some central force having an inverse square 

distance relationship.  Hooke used these letters to Newton as the basis for a claim of 

priority in the discovery of the law of gravitation, but there was a great difference between 

a contention and a proof – a proof that Newton was to supply – and Hooke's claim was 

                                     
3 The chair of mathematics founded in 1663 with money left in the will of the reverend Henry Lucas who had 

been a member of Parliament for the University.  The first professor was Isaac Barrow and the second was 

Isaac Newton.  It is reserved for individuals considered the most brilliant thinkers of their time; the current 

Lucasian Professor is Stephen Hawking. 
4 English natural philosopher who studied light, mechanics and astronomy. 
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rejected.  In January 1684, Christopher Wren5 (1632–1723), Hooke and Edmund Halley6 

(1656–1742) discussed at the Royal Society, whether the elliptical shape of planetary orbits 

was a consequence of an inverse square law of force depending on the distance from the 

Sun.  Halley wrote that, 

Mr Hook said that he had it, but that he would conceale it for some time so that others, triing 

and failing might know how to value it, when he would make it publick.  (O'Connor & 

Robertson 1996) 

Wren doubted Hooke's claim and offered a prize of a book to the value of forty shillings to 

whomever could produce a demonstration within two months.  Halley afterwards recalled 

the meeting to Newton, 

... and this I know to be true, that in January 84, I having from the sesquialtera proportion of 

Kepler, concluded that the centripetall force decreased in the proportion of the squares of the 

distances reciprocally, came one Wednesday to town where I met with Sr Christ. Wren and 

Mr Hook, and falling in discourse about it, Mr Hook affirmed that upon that principle all the 

laws of the celestial motions were to be demonstrated. (Cook 1998) 

In August 1684, Halley visited Newton at Cambridge, 

Newton later told de Moivre7: 

In 1684 Dr Halley came to visit him at Cambridge, after they had been some time together 

the Dr asked him what he thought the Curve would be that would be described by the Planets 

supposing the force of attraction towards the Sun to be reciprocal to the square of their 

distance from it.  Sr Isaac replied immediately it would be an Ellipsis, the Dr struck with joy 

& amazement asked him how he knew it, why saith he, I have calculated it, whereupon Dr 

Halley asked him for his calculation without any further delay, Sr Isaac looked among his 

papers but could not find it, but he promised him to renew it, & then send it him ... (Cook 

1998) 

In November 1684, Halley received a nine-page article De motu corporum in gyro (On the 

motion of bodies in an orbit) in which Newton showed that an elliptical orbit could arise 

                                     
5 Greatest of English architects.  Founder of the Royal Society (president 1680–82). 
6 English mathematician, geophysicist, astronomer who discovered comets move in periodic orbits, the most 

famous being the one named in his honour with a period of 75½ years. 
7 Abraham de Moivre (1667–1754), a French Huguenot who settled in London in 1685 and whose name is 

attached to a theorem of trigonometry: ( )cos sin cos sinni n i nφ φ φ φ+ = + .  In 1733, he derived the 

normal probability function as an approximation to the binomial law. 
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from an inverse square attraction of gravity.  Newton also derived Kepler's second and 

third laws and the trajectory of a projectile under constant gravity in a resisting medium.  

De motu did not state the law of universal gravitation or Newton's three laws of motion, 

but the problem he solved was crucial to the development of celestial mechanics and 

dynamics. 

Halley realised the importance of De motu as soon as he received it.  He visited Newton 

again in Cambridge, suggesting that he publish his work.  By the end of 1685, Newton had 

expanded De motu into two volumes, which Halley read and annotated, and that would 

eventually become the Principia8.  In 1686, Halley gave a presentation to the Royal 

Society where he reported Newton's ‘incomparable Treatise of motion almost ready for the 

Press’.  The first part arrived at the Royal Society on 28 April 1686: 

Dr Vincent presented to the Society a manuscript treatise entitled Philosophiae naturalis 

principia mathematica, and dedicated to the Society by Mr Isaac Newton, wherin he gives a 

mathematical demonstration of the Copernican hypothesis as proposed by Kepler, and makes 

out all the phaenomena of the celestial motions by the only supposition of a gravitation 

towards the centre of the sun decreasing as the squares of the distances therefrom 

reciprocally. 

It was ordered that a letter of thanks be written to Mr Newton; and that the printing of the 

book be referred to the consideration of the council; and that in the meantime the book be 

put into the hands of Mr Halley, to make a report thereof to the council.  (Cook 1998) 

Newton took about two years to write the Principia, from the late summer of 1684 to the 

middle of 1687.  Halley undertook the publication of Newton's work, meeting all costs from 

his own resources.  The Principia contained three books; Book I, containing Newton's three 

laws of motion; Book II, essentially a treatment of fluid mechanics; and Book III subtitled 

System of the World where Newton set forth the principle and law of universal gravitation 

and used it, together with his laws of motion, to explain the motions of the planets as well 

as comets, the effect of the Moon on the Earth's rotation and the ocean tides.  The 

Principia was Newton's masterpiece and the fundamental work of modern science. 

Newton retired from academic life in 1693 and in 1696 took up a government post as 

warden of the Royal Mint and oversaw the re-establishment of the English currency.  He 

resigned his post of Lucasian Professor in 1701 and was elected by Cambridge University 

to Parliament; serving until 1702.   

                                     
8 Philosophiae naturalis principia mathematica (Mathematical Principles of Natural Philosophy). 
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He was elected president of the Royal Society in 1703 and re-elected every year until his 

death in 1727.  He was knighted by Queen Mary in 1705, the first scientist to receive such 

an honour. 

In Book 1 of the Principia, Newton introduces his three laws of motion: 

• First Law – Every body continues in its state of rest or of uniform motion in a 

straight line unless it is compelled to change that state by forces impressed upon it. 

• Second Law – The rate of change of momentum is proportional to the force 

impressed and is in the same direction as that force. 

• Third Law – To every action there is always opposed an equal reaction. 

In Book III of the Principia, Newton formulated his law of universal gravitation, which we 

commonly express as: 

• The Law of Universal Gravitation – any two bodies attract one another with a force 

proportional to the product of their masses and inversely proportional to the square 

of the distance between them, 

 1 2 1 2
2 2

12 12

m m Gm mF
r r

∝ =  (7) 

 where 1 2,m m  are the masses of the two bodies, 12r  is the distance between them 

and G is the Newtonian constant of gravitation, whose current best known value is 
11 3 1 26.67259 10  m kg sG − − −= × . 

 

THE N-BODY PROBLEM 

A satellite orbiting the Earth has a mass m and its motion in space is affected by various 

forces; gravitational forces caused by mass attraction (Newton's law of universal 

gravitation) of the bodies Earth, Moon, Sun and the planets; forces caused by atmospheric 

drag for low-Earth-orbiting satellites; thrust forces caused by rocket motors; forces caused 

by solar radiation pressure; and other forces – often called perturbative forces, as their 

effect tends to move or perturb a satellite from its Keplerian orbit.  The equation of 

motion for such a satellite would be called the equation of motion for an N-Body system. 

The equation of motion can be expressed as a vector differential equation and it is useful 

to develop a vector expression for Newton's law of universal gravitation. 
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Figure 3:  Gravitational force between two masses 

Figure 3 shows the gravitational force gF  caused by mass 1m  attracting mass 2m  where 

the masses are a distance r apart.  We may write 

 g x y zF F F= − − −F i j j  (8) 

where , ,x y zF F F  are the scalar components of F in the directions of the x,y,z Cartesian axes 

whose origin is at the centre of mass 2m .  i,j,k are unit vectors in the direction of the 

Cartesian axes.  Also, we may write 

 ( ) ( ) ( )12 2 1 2 1 2 1x x y y z z= − + − + −r i j j  (9) 

where the distance 12r  is the magnitude of 12r  and 

 ( ) ( ) ( )2 2 2
12 12 2 1 2 1 2 1r x x y y z z= = − + − + −r  (10) 

Also 

 2 1 2 1 2 1

12 12 12

cos ; cos ; cosx x y y z z
r r r

α β γ
− − −

= = =  (11) 

Now, the scalar component xF  of gF  is 

 ( )1 2 1 2 2 1 1 2
2 12 2 3

12 12 12 12

cos cosx
Gm m Gm m x x Gm mF F x x

r r r r
α α

⎛ ⎞− ⎟⎜ ⎟= = = = −⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (12) 

and similarly, the components yF  and zF  are 

 ( )1 2
2 13

12
y

Gm mF y y
r

= −  (13) 
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 ( )1 2
2 13

12
z

Gm mF z z
r

= −  (14) 

Using these results in equation (8) we have the law of universal gravitation in vector 

notation 

 ( ) ( ) ( ){ }1 2 1 2
2 1 2 1 2 13 3

12 12
g

Gm m Gm mx x y y z z
r r

= − − + − + − = −F i j k r  (15) 

 

Generalizing the gravitational force 

y

x

z

•
•

•
•

m

m

m

m

2

1

n

i

Fg1

Fgn
Fg2

r1

rn

ri

r2

FOTHER

 

 

Figure 4:  The N-Body problem 

Figure 4 shows the mass bodies 1 2, , , , ,i nm m m m… …  and the gravitational forces acting on 

the body of mass im .  The resultant gravitational force acting on the body of mass im  can 

be written as 

 1 2
1 23 3 3 3

11 2

n
ji i i n

g i i in i ij
ji i in ij
j i

mGm m Gm m Gm m Gm
r r r r=

≠

⎧ ⎫⎪ ⎪⎪ ⎪= − − − − = − ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑F r r r r"  (16) 

The other external forces OTHERF  are composed of 

 DRAGF  (drag forces due to the atmosphere) 

 THRUSTF  (thrust forces due to rocket motors) 

 SOLARF  (solar radiation pressure) 

 PERTURBF  (perturbing forces due to non-spherical shape of masses) 

 etc. 



 
Satellite Orbits  12 

The total force, TOTALF  acting on the body is 

 TOTAL OTHERg= +F F F  (17) 

Now, from Newton's second law of motion, where momentum = mass  velocity×  we may 

express the rate of change of momentum of im  as 

 ( ) TOTALi i
d m
dt

=v F  

where v is velocity; a vector quantity having magnitude v (speed) and direction.   

Expanding this equation gives 

 TOTAL
i i

i i
d dmm
dt dt

+ =
v v F  (18) 

Note here that in equation (18) idm
dt

 is the rate of change of mass, and in the case of a 

satellite, its mass may be changing by converting fuel into thrust.  Also, velocity v is the 

rate of change of distance, i.e.,  

 d
dt

= =
rv r�  (19) 

and acceleration a, also a vector quantity, is the rate of change of velocity, hence 

 
2

2

d d
dt dt

= = =
v ra r��  (20) 

Dividing both sides of equation (18) by im  gives 

 TOTALi i i

i i

d dm
dt m dt m

+ =
v v F  

and re-arranging this equation gives 

 TOTAL i
i i

i i

m
m m

= −
Fr r

��� �  (21) 

where i
i

dmm
dt

=�  is the rate of change of mass. 

Equation (21) is the second-order, non-linear, vector, differential equation of motion.  It 

has no direct solution. 

To simplify equation (21) and make it more amenable for solution for an Earth-orbiting 

satellite, we may write 
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 { }
TOTAL OTHER

DRAG THRUST SOLAR PERTURB

g

g

= +

= + + + + +

F F F

F F F F F "  (22) 

and make the following assumptions 

 (i) the mass of the satellite, the ith body, remains constant, i.e., un-powered flight 

hence 0im =�  

 (ii) DRAGF , THRUSTF , SOLARF , PERTURBF , etc., are all zero 

 (iii) 1  mass of Earthm M= =  

  2  mass of satellitem m= =  

  3 mass of Moonm =  

  4 mass of Sunm =  

  mass of planetk km =  
 

Hence, we are only concerned with gravitational forces and may write equation (21) as 

 3
1

n
g j

i ij
ji ij
j i

m
G

m r=
≠

= = − ∑
F

r r��  (23) 

For 1i =  1 13
2 1

n
j

j
j j

m
G

r=

= − ∑r r��  (24) 

For 2i =  2 23
1 2
2

n
j

j
j j
j

m
G

r=
≠

= − ∑r r��  (25) 

Now 12 2 1= −r r r , so 12 2 1= −r r r�� �� ��  and using equations (24) and (25) gives 

 12 2 13 3
1 22 1
2

n n
j j

j j
j jj j
j

m m
G G

r r= =
≠

= − +∑ ∑r r r��  (26) 

Expanding equation (26) 

 

1 3 4
12 12 32 423 3 3

12 32 42

2 3 4
21 31 413 3 3

21 31 41

Gm Gm Gm
r r r

Gm Gm Gm
r r r

⎧ ⎫⎪ ⎪⎪ ⎪=− + + +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪+ + + +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

r r r r

r r r

�� "

"
 

and since 21 12=−r r  we have the acceleration between bodies 1m  and 2m  as 

 
( ) 2 11 2

12 123 3 3
312 2 1

n
j j

j
j j j

G m m
Gm

r r r=

⎛ ⎞+ ⎟⎜ ⎟⎜= − − − ⎟⎜ ⎟⎟⎜⎝ ⎠
∑

r r
r r��  (27) 
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For the Earth 1m M=  and a satellite 2m m=  and 12  Earth-satellite distancer r= = , we 

may write equation (27) as 

 
( )

EARTH-SAT 3  accelerations due to Sun, Moon, planets
G M m

r
+

= − −r r��  (28) 

To further simplify equation (28) it is necessary to determine the magnitude of the 

accelerations due to the Sun, Moon and planets compared with the acceleration between 

the satellite and the Earth. 

Assume a satellite is in a circular orbit around the Earth at an altitude of 500 km.  The 

acceleration, directed towards the centre of the Earth is found from equation (28) with the 

mass of the satellite assumed to be negligible and the acceleration due to the Sun, Moon 

and planets ignored 

 2

GMa
r

=  (29) 

Using 11 3 1 26.67259 10  m kg sG − − −= × , the radius of the Earth as 6378000 mr =  and the 

mass of the Earth from Table 1, the acceleration is 

 
( )( )

( )

11 24
2

2

6.67259 10 5.9742 10
8.427 m s

6378000 500000
a

−
−× ×

= =
+

 

On the surface of the Earth, the acceleration, denoted by g is 

 
( )( )

( )

11 24
2

2

6.67259 10 5.9742 10
9.800 m s

6378000
g

−
−× ×

= =  

So the relative acceleration, caused by the mass of the Earth, is 0.860g . 

Using the values given in columns 2 and 3 of Table 1 and equation (29) the relative 

accelerations on the satellite caused by the masses of the Sun, Moon and planets are shown 

in column 4. 

Notice also that the effect of a non-spherical Earth (oblateness) is included for comparison. 
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Table 1:  Comparison of relative acceleration (in g's) for a satellite orbiting the Earth at 

an altitude of 500 km. 

 
 Mean distance 

(×109 m) 
Mass 

(×1024 kg) 
Mass 

(Earth = 1) 

Acceleration in 
g's on 500 km 
satellite 

Sun  1989100.0 332948.0 6.1×10-4 
Mercury 57.9 0.3302 0.055 2.7×10-10 
Venus 108.2 4.8690 0.815 1.9×10-8 
Earth 149.6 5.9742 1.000 0.86 
Mars 227.9 0.64191 0.107 7.1×10-10 
Jupiter 778.3 1898.8 317.833 3.3×10-8 
Saturn 1429.4 568.5 95.159 2.4×10-9 
Uranus 2875.0 86.625 14.500 7.9×10-11 
Neptune 4504.4 102.78 17.204 3.7×10-11 
Moon 0.3844 

(Earth–Moon) 
0.073483 0.012 3.5×10-6 

Earth Oblateness    1.0×10-3 
 

 

Notes: 1. Table 1 follows Table 1.2-1 in Fundamentals of Astrodynamics by Bate, 

Mueller and White, 1971.  The values in columns 2 and 3 (mean distances and 

masses) are taken from the Explanatory Supplement to the Astronomical 

Almanac, edited by P. K. Seidelmann, U.S. Naval Observatory, Washington, 

D.C., 1992. 

 2. The Earth is not a spherical body with homogeneous mass density; it is 

actually slightly pear shaped with an equatorial bulge and variable mass 

density.  Treating the Earth as an homogeneous spherical body will induce 

small errors in calculated accelerations due to gravitational attraction and this 

error is modelled by the Earth Oblateness value shown in column 5 of Table 1. 

 

THE TWO-BODY PROBLEM 

Equation (28) is a general expression for the relative motion of two bodies perturbed by 

the gravitational effects of other bodies where all other forces are ignored.  It can be 

further simplified by the following assumptions: 

 (i) The bodies are spherically symmetric with homogeneous mass densities.  This 

enables us to treat the bodies as though their masses are concentrated at their 

centres. 
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 (ii) There are no external or internal forces acting on the system other than 

gravitational forces acting on the line joining their centres. 

Hence equation (28) becomes 

 ( )
3

G M m
r
+

= −r r��  (30) 

Equation (30) is the vector differential equation of relative motion for the two-body 

problem, Earth (M) and satellite (m). 

For m M�  we may write 

 3

GM
r

= −r r��  (31) 

Equation (31) is the two-body equation of motion that we will use in subsequent 

developments and is based on the assumptions above and that fact that the mass of a 

satellite m is very much smaller than the mass of the Earth M.  We can also express the 

equation of motion for the two-body problem as 

 3 0GM
r

+ =r r��  (32) 

 

CONSTANTS OF THE TWO-BODY MOTION 

Assuming the Earth is a spherical body with homogeneous mass density, its gravitational 

field is spherically symmetric and a satellite moving in this conservative field possesses 

energy.  It does not lose or gain energy but simply exchanges one form of energy, kinetic 

for another form called potential energy.  Hence, Total Energy of Motion = Kinetic Energy 

+ Potential Energy, is conserved.  Also, as the satellite orbits the Earth, its radius vector 

sweeps out an angle and the satellite has a certain angular momentum (mass × angular 

velocity).  It takes a tangential component of force to change the angular momentum of 

the satellite, but the only force admitted in the system is the gravitational force directed 

towards the centre of the Earth; so we would expect that the angular momentum of the 

satellite is also conserved. 

Hence we have two constants of motion that can be determined from conservation of total 

energy, and conservation of angular momentum. 
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Conservation of Total Energy 

The energy constant of motion can be derived as follows: 

1. Using the scalar product (dot product), multiply both sides of equation (32) by r�  

 3 0GM
r

+ =r r r r�� � �i i  (33) 

2. Now for a vector 1 2 3a a a= + +a i j k  then 2 2 2
1 2 3a a a a= = + +a  and 

 ( )
1
22 2 2 1 2 31

2 1 2 3 1 2 32 2 2da da da daa a a a a a a
dt dt dt dt a

− ⎛ ⎞⎟⎜= = + + + + =⎟⎜ ⎟⎜⎝ ⎠
a a�i�  

 giving, in general, aa=a a� �i .  Also, =r v�  (velocity vector), =r v�� �  (acceleration 

vector); and we may write equation (33) as 

 3 0GM
r

+ =v v r r� �i i  

 and 

 3 0GMvv rr
r

+ =� �  (34) 

 noting that  and v v= =v v� �  and similarly for r and r� . 

3. Noticing that 
2 2

2 2
d v d v dv vv
dt dv dt

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= =⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
�  and 2

d GM d GM dr GM r
dt r dr r dt r

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜− = − =⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
�  

 equation (34) can be written as 

 
2

0
2

d v d GM
dt dt r

⎛ ⎞ ⎛ ⎞⎟⎜ ⎟⎜+ − =⎟⎜ ⎟⎜⎟ ⎟⎜⎟⎜ ⎝ ⎠⎝ ⎠
 

 or 

 
2

0
2

d v GM
dt r

⎛ ⎞⎟⎜ − =⎟⎜ ⎟⎟⎜⎝ ⎠
 (35) 

4. If the time rate-of-change of an expression is zero, as it is in equation (35), that 

expression must be a constant.  Call this constant the Total Energy of Motion 

denoted ME  (Bate, Mueller, White 1971) 

 
2

2M
v GME

r
= −  (36) 



 
Satellite Orbits  18 

The Total Energy of Motion ME  is the sum of the kinetic energy per unit mass 
2

2
v⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 and 

the potential energy per unit mass GM
r

⎛ ⎞⎟⎜− ⎟⎜ ⎟⎜⎝ ⎠
.  Note that the potential energy of a satellite 

will always be negative, since in the formulation of the equation, the reference point for 

potential energy (where the potential energy will be zero) is at infinity. 

Conservation of Angular Momentum 

The angular momentum constant of motion can be derived as follows: 

1. Using the vector product (cross product), multiply both sides of equation (32) by r  

 3 0GM
r

× + × =r r r r��  (37) 

2. Now, since in general 0× =a a  (from the rules of vector cross products), the second 

term in equation (37) is zero, giving 

 0× =r r��  (38) 

3. Noticing that ( )
d d d
dt dt dt

× = × + × = × + × = ×
r rr r r r r r r r r r
�� �� � ��  and =r v�  then 

equation (38) becomes 

 ( ) 0d
dt

× =r v  (39) 

The expression ×r v , which must be a constant of the motion, since from equation (39) its 

time derivative is zero, is called the Angular Momentum vector and is denoted by h. 

 = ×h r v  (40) 

Since h is the vector cross product of r and v, it must always be normal to the plane 

containing both r and v.  But h is a constant vector, so r and v must always remain in the 

same plane.  We can conclude, then, that the satellite's motion must be confined to a plane 

fixed in space and passing through the centre of mass of the Earth.  This is the satellite's 

orbital plane. 

A useful expression for the magnitude of h can be found by investigating the angle 

between the vectors r and v in the orbital plane. 
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Figure 5:  Orbit plane and the vectors r, v and h 

Figure 5 shows a satellite S in orbit around the Earth.  The vectors r and v lie in the orbit 

plane and the Angular Momentum vector = ×h r v  is normal to the orbital plane.  The 

local vertical of a satellite is in the direction of the radius vector r and this defines the Up 

direction.  The local horizon plane of the satellite will be a plane normal to the local 

vertical and normal to the orbital plane.  h will lie in the local horizontal plane and a local 

horizontal is a line in the local horizontal plane and normal to the local vertical. 
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Figure 6:  Flight path angle φ  

Figure 6 shows the flight angle 90φ γ= −D  where γ  is the angle between the radius 

vector r and the velocity vector v.  Now from the definition of a vector cross product, we 

may write 

 ˆsinrv γ× = =r v h h  
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where ĥ  is a unit vector in the direction of h.  Hence sinrv γ  is the magnitude of h, the 

Angular Momentum h and 

 cosh rv φ=  (41) 

Note here that the sign of φ  will be the same sign as r vi .  Figure 7 shows a satellite in an 

elliptical orbit around the Earth.  At perigee, the flight path angle 0φ = D , the local 

vertical is normal to the velocity vector v and h rv= .  At positions 1S  and 2S  the flight 

path angle 0φ >  and at 3S  the flight path angle 0φ < . 
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Figure 7:  Flight path angles φ  on an elliptical orbit 

 

THE TRAJECTORY EQUATION 

The solution of the equation (32) requires integration and from this we may determine the 

size and shape of the orbit and how the satellite moves around the orbit 

Recall equation (31) 

 3

GM
r

= −r r��  

The vector cross product ×r h��  is 

 ( ) ( )3 3

GM GM
r r

× = − × = ×r h r h h r��  (42) 
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Now ( )
d d d
dt dt dt

× = × + ×
h rr h r h

�� �  and since h must remain constant then 0d
dt

=
h .  

Therefore ( )
d d
dt dt

× = × = ×
rr h h r h
�� �� .  Using this result in the left-hand-side of equation 

(42) gives 

 ( ) ( )3

d GM
dt r

× = ×r h h r�  (43) 

Using the conservation of angular momentum [see equation (40)], the right-hand-side of 

equation (43) is 

 ( ) ( )
3 3

GM GM
r r

× = × ×h r r v r  (44) 

and from the rules for vector triple products and previous results 

 

( ) ( ) ( )

( )

( )

2

2

r

r rr

× × = −

= −

= −

r v r r r v v r r

v r r r

v r

i i

� i

�

 

Hence, equation (44) becomes 

 

( ) ( ){ }2
3 3

2

2

GM GM r rr
r r

GM GM r
r r

r r
GM

r

× = −

= −

⎛ − ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

h r v r

v r

v r

�

�

�
 (45) 

Now 2 2

d drr r rd dt dt
dt r r r

− −⎛ ⎞⎟⎜ = =⎟⎜ ⎟⎝ ⎠

r r v rr �
, hence equation (45) becomes 

 ( )3

GM dGM
r dt r

⎛ ⎞⎟⎜× = ⎟⎜ ⎟⎝ ⎠
rh r  (46) 

Substituting equation (46) into equation (43) gives 

 ( )
d dGM
dt dt r

⎛ ⎞⎟⎜× = ⎟⎜ ⎟⎝ ⎠
rr h�  

and integrating both sides of this vector equation gives 

 GM
r

× = +r h r B�  (47) 

where B is a vector constant of integration. 
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Multiplying both sides of equation (47) by r (using vector scalar product) gives a scalar 

equation 

 ( )
GM

r
⎛ ⎞⎟⎜× = +⎟⎜ ⎟⎜⎝ ⎠

r r h r r r B�i i i  (48) 

Using the rules for vector triple products ( ) ( ) ( ) 2h× = × = × = =r r h h r r h r v h h� �i i i i  

and equation (48) becomes 

 ( ) 2 GMh
r

× = = +r r h r r r B�i i i  (49) 

Now, since 2r=r ri  and cos cosrBθ θ= =r B r Bi  where the true anomaly θ  is the angle 

between vectors r and B, equation (49) can be written as 

 2 cosh GMr rB θ= +  (50) 

Re-arranging equation (50) gives the trajectory equation 

 

2

1 cos

h
GMr B
GM

θ
=

+
 (51) 

Recalling equation (1) 

 
( )21

1 cos 1 cos
a e lr

e eθ θ

−
= =

+ +
 (52) 

we note that this is the polar equation of a conic section that is an ellipse, parabola or 

hyperbola according as e is less than, equal to or greater than one.  Since orbits of planets 

and satellites of the Earth are closed curves, it follows that they must be ellipses (or circles 

– special cases of ellipses where 0e = ).  So we may conclude, by comparison with equation 

(52), that equation (51) is the polar equation of an ellipse with the origin at a focus, where 

r is the magnitude of the radius vector, θ  is the true anomaly, l is the semi-latus rectum 

and e is the orbit eccentricity and 

 ( )
2

21 hl a e
GM

= − =  (53) 

 Be
GM

=  (54) 

This verifies Kepler's First Law:  the orbital path (of a planet) is an ellipse... 
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B is a vector directed towards perigee, the closest point, on the elliptical orbit, to the 

Earth which is at the focus of the ellipse.  e, the eccentricity vector, is also directed 

towards perigee, and we may write 

 
GM

=
Be  (55) 
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 Figure 8:  Orbital ellipse 

 

Now, re-arranging equation (47) we have 

 GM GM
r r

= × − = × −B r h r v h r�  

and using equation (55) gives 

 
GM r
×

= −
v h re  (56) 

h can be eliminated from equation (56) using equation (40) and the rules for vector triple 

products 

 

( )

( ) ( )

( )2v

× = × ×

= −

= −

v h v r v
v v r v r v

r r v v

i i

i

 

Substituting this result into equation (56) and re-arranging gives an expression for the 

eccentricity vector as 

 ( )21 GMv
GM r

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥= − −⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
e r r v vi  (57) 

This result is used in the determination of the elements (or parameters) of an orbit. 
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RELATING THE CONSTANTS OF MOTION ME AND h TO THE 

GEOMETRY OF AN ORBIT 

From equation (53) we see that the semi-latus rectum of the orbital ellipse is 

 
2hl

GM
=  (58) 

and the orbit parameter l depends only on the Angular Momentum h, since GM is a 

constant. 

Now from ellipse geometry 

 ( ) ( )( )21 1 1l a e a e e= − = − +  (59) 

So we may write 

 ( ) ( )( )2 21 1 1h GMl GMa e GMa e e= = − = − +  (60) 

Also, with the polar equation of the ellipse 
1 cos

lr
e θ

=
+

 we can see that 

(i) when 0θ = D  the satellite is a perigee, the closest point to the Earth (see Figure 8) 

and 

 
( )

( )( )
( )

1 1 1
1 cos 90 1p

l a e er r a e
e e

− +
= = = = −

+ +D  (61) 

(ii) when 180θ = D  the satellite is a apogee, the furthest point from the Earth (see Figure 

8) and 

 
( )

( )( )
( )

1 1 1
1 cos 180 1a

l a e er r a e
e e

− +
= = = = +

+ −D  (62) 

At perigee or apogee of an elliptical orbit, the velocity vector (which is always tangential 

to the orbit path) is normal to the axis of the orbital ellipse and the flight path angle 

0φ =  (see Figure 7), hence from equation (41) we have 

 p p a ah r v r v= =  (63) 

where ,p av v  are satellite velocities at perigee and apogee respectively. 

Writing the Total Energy of Motion equation (36) for perigee and using equation (63) 

gives 

 
2 2

22 2
p

M
p p p

v GM h GME
r r r

= − = −  (64) 
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And using equations (60) and (61) in equation (64) gives 

 ( )( )
( ) ( ) { }22

1 1 1 2
2 1 1 2 1 1M

GMa e e GM GM eE
a e a e a e e

− + +
= − = −

− − − −
 

which reduces to 

 
2M

GME
a

= −  (65) 

We can see here that for an elliptical orbit, the Total Energy of Motion is a negative 

quantity and the semi-major axis a of the orbit depends only on the Total Energy of 

Motion.   

Note: Equation (65) is valid for all conic section orbits; circle, ellipse, parabola and 

hyperbola.  If ME  is negative the orbit is circular or elliptical, if ME  is zero the 

orbit is parabolic and if ME  is positive the orbit is hyperbolic.  We are only 

concerned with elliptical or circular orbits here and a more complete treatment can 

be found in Bate, Mueller and White (1971). 

Now, h is a function of GM, a and e [see equation (60)] and ME  is a function of GM and a 

[see equation (65)]; so the orbital eccentricity e is a function of ME  and h.  This can be 

shown as follows: 

 From equations (58) and (59) we have ( )
2

21hl a e
GM

= = −  therefore 1 le
a

= − . 

 From equation (65) 
2 M

GMa
E

= −  and substitution into the equation for e above, gives 

 
( )

2

2
21 Mh Ee
GM

= +  (66) 
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PERIOD OF AN ELLIPTICAL ORBIT 
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Figure 9:  Horizontal component of velocity 

Figure 9 shows a satellite having a velocity vector v with magnitude v and a horizontal 

component ′v  whose magnitude is cosv v φ′ =  where φ  is the flight angle.  As the 

satellite at A moves a small distance sδ  along its orbit to B the radius vector sweeps out a 

small angle δθ  and the horizontal component of velocity changes by a small amount 

B Aδ ′ ′ ′= −v v v .  This change in velocity is shown as a vector triangle in Figure 9 and the 

magnitude of δ ′v  can be considered as the arc of a circle of radius Av ′  and Av vδ δθ′ ′= .  

Also sδ  can be considered as an arc of a circle of radius r subtending an angle of δθ  at the 

centre and s rδ δθ= , and the small area swept out by the radius vector is 21
2A rδ δθ= . 

In the limit, as B approaches A and 0sδ →  the small changes in horizontal velocity, orbit 

path distance and area can be written as differential relationships; 

 
21

2

dv v d

ds r d

dA r d

θ

θ

θ

′ ′=

=

=

 

Now change in distancevelocity
change in time

=  and ds dv r
dt dt

θ′ = = .  Using this relationship we may 

write the horizontal component of velocity as 

 cos dv v r
dt
θ

φ′ = =  (67) 

Substituting equation (67) into equation (41) gives an expression for the Angular 

Momentum as 

 2 dh r
dt
θ

=  (68) 
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that can be re-arranged as 

 
2rdt d

h
θ=  (69) 

Now since 21
2dA r dθ=  we can express equation (69) as 

 2dt dA
h

=  (70) 

This equation proves Kepler's Second Law: the line joining the planet to the Sun sweeps out 

equal areas equal time, since h is a constant for a particular orbit.  We can also see the 

verification of Kepler's Second Law by comparing equations (68) and (5) where the 

constant C denoting a doubled-area is identical to h, the Angular Momentum. 

During a single orbital period, denoted T, the radius vector sweeps out the area of an 

ellipse A abπ=  and integrating equation (70) gives the orbital period 

 
0

2 2A ab

A

abT dA
h h

π π=

=

= =∫  (71) 

From ellipse geometry, the eccentricity-squared is 
2 2

2
2

a be
a
−

=  giving ( )2 21b a e= − .  

But, from equation (60) we have ( )
2

2 21 aha e
GM

− = , hence ab h
GM

= .  Substituting this 

result into equation (71) gives the period of an orbit as 

 
3

2 aT
GM

π=  (72) 

Thus the period of an elliptical orbit depends only on the size of the semi-major axis a. 

Also, equation (72) is a verification of Kepler's Third Law: the square of the period is 

proportional to the cube of the mean distance.  Note that a (the semi-major axis of the 

elliptical orbit) is the mean of pr  and ar  the lengths of the radius vectors at perigee and 

apogee [see equations (61) and (62)] so a can be regarded as the mean distance of a 

satellite from the Earth at the focus of the ellipse. 

In the sections above we have demonstrated that the solution of the two-body problem; 

formulated using Newton's laws of motion and universal gravitation, yields equations 

defining the size and shape of elliptical orbits and their period of revolution.  This is a 

verification of Kepler's three laws of planetary motion deduced for an analysis of relative 

planetary positions observed by Tycho Brahe. 
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The following sections show how satellite position can be computed. 

 

TIME-OF-FLIGHT, ECCENTRIC ANOMALY, TRUE ANOMALY AND 

KEPLER'S EQUATION 
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 Figure 10:  True anomaly θ  and Eccentric anomaly ψ  

Figure 10 shows a satellite S on an elliptical orbit around the Earth E.  The orbital ellipse 

with semi-axes a and b has an auxiliary circle of radius a.  The Cartesian equations of the 

ellipse and the auxiliary circle are  

 
2 2

2 2 2
2 2Ellipse:   1      Circle:   x y x y a

a b
+ = + =  

from which 

 2 2 2 2
ellipse circle    and    by a x y a x

a
= − = −  

Hence, we have the simple relationship between the y-coordinates of an ellipse and its 

auxiliary circle 

 ellipse

circle

y b
y a

=  (73) 

In Figure 10, S and Q have the same x-coordinate, therefore by equation (73) S Q
by y
a

=  
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Also, S is located on the ellipse by the orbital radius r and the true anomaly θ  and Q on 

the auxiliary circle by radius a and the eccentric anomaly ψ .  In orbital mechanics a 

satellite (on an elliptical orbit) is said to have a true anomaly and an eccentric anomaly. 

The radius vector of a satellite moving in an elliptical orbit sweeps out an area abπ  in one 

revolution of period T.  Let 0t t=  be the time that the satellite is at perigee and kt t=  be 

the time when it is at some general point S, when the true anomaly is θ  and the area 

swept out by the radius vector since perigee is 1A  (see Figure 10).  Then – because area is 

swept out at a constant rate (Kepler's Second Law) – we can write 

 0

1

kt t T
A abπ
−

=  (74) 

where 0kt t−  is the time-of-flight; the time since the satellite passed through perigee at 

0t t= . 

From Figure 10, the area swept out by the radius vector is Area NSP minus Area NSE, or 

 1 2 Area A NSP A= −  (75) 

Now from ellipse geometry OE = ae, where e is the orbital eccentricity, and 2A  is a 

triangle with base ( )cos cosOE ON ae a a eψ ψ− = − = −  and altitude ( )sin sinb a b
a

ψ ψ=  

and 

 ( )2 sin sin cos
2
abA e ψ ψ ψ= −  (76) 

Area NSP is the area under the ellipse and Area NQP is the area under the auxiliary 

circle, so from equation (73) 

 ( )Area Area bNSP NQP
a

=  (77) 

Area NQP is the area of the sector 21
2OQP a ψ=  minus Area 21

2 sin cosOQN a ψ ψ=  and 

substituting these results into equation (77) gives 

 ( )Area sin cos
2
abNSP ψ ψ ψ= −  (78) 

Now substituting equations (78) and (76) into equation (75) gives 

 ( )1 sin
2
abA eψ ψ= −  (79) 

Finally, substituting equation (79) into equation (74) with the aid of equation (72) gives 
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 ( )
3

0 sink
at t e

GM
ψ ψ− = −  (80) 

 

Kepler introduced the term mean anomaly M and defined it as 

 sinM eψ ψ≡ −  (81) 

 

Defining the mean motion n as 

 3

GMn
a

≡  (82) 

 

gives the orbital period T as 

 2T
n
π

=  (83) 

 

and the mean anomaly M as 

 ( )0 sinkM n t t eψ ψ= − = −  (84) 

Equation (84) is known as Kepler's equation. 

The mean anomaly M is the angle in the orbital plane, with respect to the centre of a 

mean circular orbit having the same period T as the elliptical orbit, measured from perigee 

to the satellite position. 

 

The true anomaly θ  and the eccentric anomaly ψ  are connected by equations that can be 

developed using Figure 10 as follows. 

 coscos ON ae r
OQ a

θ
ψ

+
= =  (85) 

and substituting r from equation (52) into equation (85) and simplifying gives 

 coscos
1 cos
e

e
θ

ψ
θ

+
=

+
 (86) 
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Similarly 

 
( )

2

sin sinsin
1

a rNQ rb
OQ a a e

θ θ
ψ = = =

−
 

which reduces to  

 
21 sinsin

1 cos
e
e

θ
ψ

θ
−

=
+

 (87) 

Dividing equation (87) by equation (86) gives 

 
21 sintan

cos
e

e
θ

ψ
θ

−
=

+
 (88) 

Again, from Figure 10 we may write two relationships 

 
( )

2sin sin 1 sin

cos cos cos

br a a e
a

r a ae a e

θ ψ ψ

θ ψ ψ

⎛ ⎞⎟⎜= = −⎟⎜ ⎟⎜⎝ ⎠

= − = −
 

and dividing one by the other leads to 
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Note that the units of the angles M, θ  and ψ  are radians, the units of the period T are 

seconds and the units of the mean motion n are radians-per-second. 

 

COORDINATE SYSTEMS 

A reference system is a conceptual definition of an “ideal” Cartesian coordinate system 

based on some abstract principles.  A conventional reference system is one where the 

model used to define coordinates is given in detail, e.g., a coordinate origin is defined, 

primary planes of reference defined, positive directions of axes defined and reference 

surfaces defined.  Assigning coordinate values to points constitutes a realization of a 

reference system and having done this we now have a reference frame.  Subsequent 

realizations (i.e., new values of coordinates) are new reference frames which may be 

distinguished from each other by a date or epoch.  An important part of a reference frame 

is the mathematical definition of the method of connection between different reference 

frames allowing the transformation of coordinates from different measurement epochs. 
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A useful reference frame is one where the origin is stationary and the axes of the reference 

frame are motionless.  Such reference frames are called inertial9.  Some reference frames in 

a region of space are very close to inertial, i.e., their axes may be rotating very slowly and 

are sometimes called quasi-inertial. 

The Heliocentric–Ecliptic Coordinate System 
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Figure 11:  Heliocentric–ecliptic coordinate system 

The orbital path of the Earth around the Sun is an ellipse (with the Sun at the primary 

focus) and the Earth–Sun orbital plane is known as the ecliptic.  The Earth is rotating 

about its polar axis as it moves along its orbital path and the Earth's equator and its 

equatorial plane are inclined with respect to the ecliptic plane, i.e., the Earth's axis is not 

normal to the ecliptic.  This angle of inclination, known as the obliquity of the ecliptic, is 

approximately 23½º.  The intersection of the ecliptic and equatorial planes will be a line in 

the ecliptic plane and at two places on the Earth's orbital path, this line will pass through 

the centre of mass of the Sun, thus defining the direction of the equinoxes that are the two 

positions of the Earth on its orbit around the Sun (on or about the 21st of March and 21st 

                                     
9 In classical mechanics, an inertial reference frame is one in which Newton's First and Second Laws of 

Motion are valid.  Newton's laws are valid in any reference frame (in space containing all the matter of the 

universe) that is neither rotating nor accelerating.  Einstein's theory of special relativity defines inertial 

frames in a space-time continuum in the absence of gravitational fields rather than in absolute space, but 

there are finite regions in space where special relatively holds with remarkable accuracy and a reference 

frame in this region may be termed quasi-inertial. 
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September) where there will be equal periods of daylight and darkness as the Earth 

completes a single revolution about its axis. 

The , ,X Y Zε ε ε  reference frame of the Heliocentric–Ecliptic system has the ecliptic plane as 

the -X Yε ε  plane and the positive direction of the Xε  axis points along the line of the 

equinoxes, from the Sun to the Earth's position in its orbit on or about the 21st 

September.  This direction is known as the direction of the vernal equinox and is given the 

astrological symbol  – depicting the head and horns of a ram for the zodiac constellation 

Aries.   is also known as the First Point of Aries. 

An observer on Earth, on or about 21st March, would see the Sun rise due East and set 

due West, and there would be equal periods of daylight and darkness.  The apparent 

motion of the Sun on this day would be as though it were a fixed object on the equator of 

a rotating celestial sphere10 and as darkness arrives, star constellations (again considered as 

fixed objects on the celestial sphere) will appear to rise due East, in the same direction of 

sunrise.  Thousands of years ago, astronomers observed the constellation Aries rising due 

east on this day, which also coincided with spring, and called this day the vernal equinox 

(ver is Latin for spring; equus and nox are Latin for equal and night).  The direction of the 

vernal equinox (the direction to the First Point of Aries) to an observer on Earth is a fixed 

point in space at the intersection of the ecliptic and equatorial planes, having a daily 

motion akin to an imaginary star on the celestial sphere.  Unfortunately, the First Point of 

Aries (and the line of the equinoxes) is not exactly fixed in space, but instead is slowly 

moving; and this slow motion in space is known as precession.  Due to the gravitational 

effects of the planets on the Earth's orbit, the ecliptic is slowly moving in space and this 

motion causes a contribution to precession known as planetary precession.  Also, the Moon 

is rotating about the Earth and the Earth-Moon system, with its own slowly moving 

centre of mss, is rotating about the Sun.  This force-couple causes the Earth's axis to 

slowly rotate in space; much like a spinning top whose spin-axis starts to wobble as it 

slows.  This slow rotation of the Earth's axis in space, known as luni-solar precession has a 

period of approximately 26,000 years and consequently, the equatorial plane has a slow 

periodic motion. 

                                     
10 A sphere of infinite radius, with the Earth at its centre, and whose poles (the north and south celestial 

poles) are extensions of the Earth's poles and whose equator (the celestial equator) is the extension of the 

Earth's equator.  Apparent daily motions of the Sun, Moon, planets and stars are as though they are fixed 

objects on the celestial sphere which is rotating about it polar axis with the same rotation rate as the Earth. 
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The combined effects of planetary and luni-solar precession, known as general precession, 

cause the line of equinoxes to slowly rotate, thus causing an apparent motion of the First 

Point of Aries (the direction of the vernal equinox) around the celestial equator of 

approximately 51" per year.  This precession of the First Point of Aries was first observed 

by the Greek astronomer Hipparchus (190–120 BC) as an apparent annual motion of the 

rising and setting positions of certain stars.  Due to precession, the First Point of Aries 

now rises in the constellation of Pisces and will move into the constellation of Aquarius in 

the future. 

The Heliocentric-Ecliptic coordinate system is not a true inertial reference frame since 

precession will cause the line of equinoxes to slowly rotate in space, thus the (quasi-

inertial) , ,X Y Zε ε ε  coordinates are based on a particular year or epoch. 

Geocentric–Equatorial Reference System (Conventional Celestial Reference 

System) 
Z

X

vernal equinox
direction

Y

C

C

C

 

 

Figure 12:  Geocentric–Equatorial coordinate system 

The reference frame of the , ,C C CX Y Z  Geocentric–Equatorial system has its origin at the 

Earth's centre of mass.  The -C CX Y  plane is the Earth's equatorial plane and the positive 

CX -axis points in the vernal equinox direction (in the direction of The First Point of 

Aries).  The positive CZ axis points in the direction of the north pole.  The Geocentric–

Equatorial reference frame, also known as the Conventional Celestial Reference Frame is 

sometimes termed quasi-inertial since the coordinate axes are slowly rotating in space due 

to the effects of precession.   
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It is important to note here that the , ,C C CX Y Z  reference frame is not fixed to the Earth 

and rotating with it.  Rather, it is non-rotating with respect to the stars (except for 

precession of the equinoxes) and the Earth rotates relative to the reference frame. 

The Right Ascension–Declination System 
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Figure 13:  Right Ascension–Declination coordinate system 

The quasi-inertial reference frame of the Right Ascension–Declination system is closely 

related to the Geocentric–Equatorial reference frame.  The fundamental reference plane is 

the celestial equator which is the extension of the Earth's equator onto the celestial sphere.  

The position of an object projected onto the celestial sphere is fixed by two angles; Right 

Ascension denoted by α  measured in the plane of the celestial equator, positive eastwards 

from 0  to 360D D  (or 0h to 24h) from the First Point of Aries; and Declination denoted by 

δ  and measured in a plane perpendicular to the celestial equator from 0  to 90±D D  north 

or south.  The origin of the Right Ascension–Declination system (i.e., the centre of the 

celestial sphere) may be at the Earth's centre of mass, at a point on the Earth's surface, or 

anywhere else.  For all intents and purposes any point may be considered as the centre of 

a sphere of infinite radius.  Astronomers use the Right Ascension–Declination reference 

frames (defined at particular epochs identifying the direction of the line of equinoxes) to 

record positions of stars.  Because of the huge distances to the stars, their coordinates 

remain essentially unchanged even when viewed from opposite sides of the Earth's orbit 

around the Sun.  Only measurements to a few of the closest stars (at six-monthly 

intervals) reveal a difference that could be attributed to parallax. 
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Conventional Terrestrial Coordinate System 
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Figure 14:  Conventional Terrestrial coordinate system 

The reference frame of the , ,T T TX Y Z  Conventional Terrestrial system has its origin at the 

Earth's centre of mass.  The positive CZ -axis points in the direction of the north pole and 

the CZ -axis is coincident with the Earth's rotational axis.  The -T TX Y  plane is the Earth's 

equatorial plane and the positive TX -axis points through the intersection of the Greenwich 

meridian and the equator.  The positive TY -axis, advanced 90D  along the equator 

completes a right-handed coordinate system.  The , ,T T TX Y Z  reference frame – also known 

as an Earth-Centred–Earth-Fixed (ECEF) reference frame – is rotating about the CZ -axis 

with an angular velocity 7.2921151467e-05 radians/secEω = 11, i.e., the axes are fixed to 

the Earth and rotating with respect to the stars.  The Geocentric–Equatorial system, the 

Right-Ascension–Declination system and the Conventional Terrestrial system all have a 

common primary reference plane – the Earth's equatorial plane.  And the Z-axes of the 

three systems are coincident. 

Sidereal time and solar time 

The connection between the , ,T T TX Y Z  Conventional Terrestrial reference frame and the 

, ,C C CX Y Z  Conventional Celestial reference frame (Geocentric–Equatorial) is via the 

motion of  (the First Point of Aries); which we may imagine as the regular diurnal12 

                                     
11 This is the current best known value given in the World Geodetic System 1984 (WGS84) which is the 

reference system of the Global Positioning System (GPS). 
12 Daily motion. 
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motion of a star having both a Right Ascension and Declination of zero.  In this sense  

acts as a sidereal13 timekeeper where the imaginary meridian (or hour circle) passing 

through  (see Figure 13) sweeps out sidereal time (hour angles) at the celestial pole as  

rotates with the celestial sphere.  One apparent revolution of  (i.e., two successive 

transits by  of an observer's meridian), equalling one sidereal day. 

Another, more familiar timekeeper is the Sun, whose daily motion regulates many of our 

activities.  Because of the obliquity of the ecliptic and the Earth's elliptical orbit, the Sun's 

motion is irregular and it is not a suitable timekeeper, instead a fictitious Mean Sun is 

created which moves at a constant velocity around the celestial equator, with an annual 

period exactly equal to the period of the Earth's orbit of the Sun.  The Mean Sun can be 

considered as an object on the celestial sphere having a constant Declination equal to zero 

and a Right Ascension changing at a regular rate.  The Mean Sun has a regular diurnal 

motion and it will rise and set due East and West as the celestial sphere rotates.  

Successive transits of the Mean Sun of an observer's meridian define the length of a mean 

solar day, although, for practical timekeeping, we regard the solar day as beginning and 

ending as the Sun (Mean or apparent) transits an observer's lower meridian (lower 

transit); thus there is no date change (a count of days) during daylight hours.   

The length of the sidereal day is not the same length as a solar day (or a mean solar day) 

and this fact can be established from the following diagram 

1 sidereal
day

1 solar
day

sun

 

 

Figure 15:  Solar and sidereal day 

                                     
13 From the Latin siderius (sidus sideris) meaning star.  A sidereal day is the period between successive 

upper transits (of an observer's meridian) of the First Point of Aries 
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In Figure 15, at a certain instant of time, the Earth, Sun and a star (infinitely far away) 

all appear to be transiting an observer's meridian (the line and black arrow).  The Earth is 

rotating about its axis as it is moving in its orbit about the Sun and one sidereal day later, 

the distant star will again transit the observer's meridian.  A short time later the Sun will 

transit the observer's meridian completing one solar day.  Thus the solar day is longer than 

the sidereal day.   

In the course of one tropical year (the time between successive passages of the Earth 

through the vernal equinox) the Earth completes exactly one more revolution about its 

axis with respect to the direction of the vernal equinox than it does with respect to the 

Sun.  Thus (using 1990 values) the tropical year has 365.2421897 mean solar days = 

366.2421897 sidereal days giving the relationship between mean solar time intervals and 

sidereal time intervals as: 

mean solar time interval = 1.00273790935 × sidereal time interval 

Using this relationship, 1 sidereal day = 23h 56m 04.09s of mean solar time, which we see 

as the stars rising in the sky approximately 4 minutes earlier each day.   

Time diagram 
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Figure 16:  Time diagram 
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The Mean Sun (M) and the First Point of Aries  are sidereal and mean time timekeepers 

respectively and their daily motions and the relationship between time and longitude are 

best explained with the aid of a time diagram.  In Figure 16, the time diagram is a 

schematic view of the celestial sphere from a point above the north celestial pole, which is 

at the centre of a circle representing the celestial equator.  Radial lines are either meridians 

of longitude if they are connected to points on the Earth's surface (g for Greenwich, o for 

observer), or hour circles if they are connected to objects rotating with the celestial sphere 

(M for Mean Sun, A for apparent Sun,  for First Point of Aries).  As an object (M, A or 

) moves around the celestial equator, its hour circle sweeps out hour angles at the pole 

which are measured positive clockwise (westwards) from particular meridians and 

1 revolution = 360º = 24 hours 

An object (M, A or ) is at upper transit when its hour angle is zero and lower transit 

when its hour angle is 12 hours. 

Greenwich Sidereal Time (GST) is the Greenwich Hour Angle of the First Point of Aries 

(GHA ).  Universal Time (UT) is the Greenwich Hour Angle of the Mean Sun − 12 hours.  

The small difference between the Mean Sun and Apparent (or true) Sun is the Equation of 

Time (ET) which varies between ±(14½ to 16½ minutes) due to the elliptical orbit of the 

Earth and the obliquity of the ecliptic. 

Right Ascension (R.A., measured positive eastwards from the direction of the First Point 

of Aries) and Longitude (λ , measured positive eastwards from the Greenwich meridian) 

are also conveniently represented on time diagrams.  With the aid of Figure 16, the 

Longitude of the Ascending Node denoted by Nλ  is 

 ( )24 GST 15h
N Aλ λ= − × +Ω = +Ω  (90) 

where ( )24 GST 15h
Aλ = − ×  is in degrees and is the longitude of the First Point of Aries, 

Ω  (the right ascension of the ascending node) is in degrees and GST is in hours. 

The transformation between coordinates in the Conventional Celestial and Conventional 

Terrestrial reference frames is achieved using rotation matrices, i.e., 
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and 
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R R R  (92) 

Noting here that the rotation matrix 
Aλ

R  is orthogonal, hence its inverse is equal to its 

transpose. 

The general relationships between Universal Time (UT), Greenwich Sidereal Time (GST), 

Right Ascension and Longitude established above from the time diagram (Figure 16) need 

some qualification. 

Firstly, the First Point of Aries (the equinox) is not fixed on the celestial sphere, but 

instead has a slow westward motion due to general precession.  Thus there are two sidereal 

times; Greenwich Means Sidereal Time (GMST) and Greenwich Apparent Sidereal Time 

(GAST) and these two differ by a small amount known as the equation of the equinoxes.  

GAST is the Greenwich hour angle of the apparent or true equinox, and can be 

determined at observatories by observation to fixed stars.  GMST is the Greenwich hour 

angle of a mean equinox (the mean equinox of date). 

Secondly, Universal Time (UT) conforms closely to the mean diurnal motion of the Sun, 

but not exactly, and it is linked to GMST by a defined relationship.  Hence UT can be 

determined by measurements to the stars.  The uncorrected observed rotational timescale 

dependent upon the place of observation is designated UT0 and correcting this timescale 

for the effects of polar motion on the longitude of the place of observation produces UT1.  

UT1 is linked by formula to GMST but varies slightly due to the variable rotation rate of 

the Earth. 

Thirdly, since January 1st, 1972 all time services have used Coordinated Universal Time 

(UTC), which differs from International Atomic Time14 (TAI) by an integral number of 

seconds.  UTC is maintained within 0.90 second of UT1 by the introduction of one-second 

steps (leap seconds) when necessary, usually at the end of June or December. 

                                     
14 International Atomic Time (Temps Atomique International, or TAI) is based on an ensemble of atomic 

clocks at observatories around the world.  The fundamental unit of atomic time is the Système International 

(SI) second defined as the duration of 9,192,631,770 periods of the radiation corresponding to the transition 

between two hyper-fine levels of the ground state of the cesium-133 atom. 
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Lastly, the line of the nodes, and consequently the Right Ascension of the ascending node, 

is not fixed.  Its location slowly varies due to the precession of the satellites orbital plane 

caused by the equatorial bulge of the Earth. 

A more complete treatment of time and related coordinate systems can be found in 

Seidelmann (1992). 

Perifocal Coordinate System 

A convenient reference frame for describing the motion of a satellite is the , ,X Y Zω ω ω  

Perifocal15 coordinate reference frame.  The origin of the coordinate system is at the 

Earth's centre of mass and the -X Yω ω  plane is the satellite's orbital plane.  The positive 

-axisXω  passes through perigee and the -axisYω  is advanced 90D  in the direction of orbital 

motion.  The -axisZω  completes the right-handed system. 
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Figure 17:  Perifocal Coordinate System and Satellite orbit elements 

                                     
15 In orbital mechanics, the major axis of the orbital ellipse is known as the line of apsides.  The nearest and 

furthest points on the orbit from the focus are periapsis and apoapsis respectively and known collectively as 

apse points.  If the Earth is at the focus, the apse points are called perigee and apogee and if the Sun is at 

the focus then they are perihelion and aphelion.  A coordinate system with the origin at the focus and the X-

axis in the direction of periapsis is a perifocal coordinate system. 
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KEPLERIAN ORBITAL ELEMENTS 

Given a time kt  the , ,C C CX Y Z  Geocentric–Equatorial system coordinates of a satellite in 

an elliptical orbit can be computed with the aid of six independent quantities called 

Keplerian orbital elements (or orbital parameters).  These orbital elements completely 

describe the size, shape and orientation of an orbit and the time 0t  of perigee passage.  

This classical set of orbit elements are defined with the aid of Figure 17 as follows. 

1. a, semi-major axis – a constant defining the size of the ellipse. 

2. e, eccentricity – a constant defining the shape of the ellipse. 

3. ι , inclination – then angle between the orbital plane and the equatorial plane. 

4. Ω , longitude of the ascending node16 – the angle measured positive eastwards 

in the equatorial plane from the direction of the vernal equinox.  This angle is 

also known as the Right Ascension of the ascending node. 

5. ω , argument of perigee – the angle measured in the orbital plane between the 

line to the ascending node and the line through perigee (the -axisXω ).  The 

positive direction of ω  is the direction of the satellite's motion. 

6. 0t , time of perigee passage – the time when the satellite was at perigee. 

 

C C CX ,Y ,Z  GEOCENTRIC–EQUATORIAL COORDINATES AT TIME kt  

USING KEPLERIAN ORBITAL ELEMENTS 

Given GM (the product of the Newtonian constant of gravitation G and the mass of the 

Earth M) the computation of coordinates is achieved by firstly computing the Perifocal 

coordinates , , 0X Y Zω ω ω =  at time kt  and then transforming them to the , ,C C CX Y Z  

reference frame by orthogonal rotation.  The computational steps are: 

1. Compute the orbital mean motion constant 3

GMn
a

=  

2. Compute the mean anomaly ( )0kM n t t= −  

3. Solve Kepler's equation sinM eψ ψ= −  for the eccentric anomaly ψ  

                                     
16 The intersection of the orbital plane and the equatorial plane is the line of nodes.  The ascending node is 

the point where the satellite passes from below to above the equatorial plane.  The descending node is the 

point where the satellite passes from above to below the equatorial plane. 
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4. Compute the true anomaly θ  from 
21 sintan

cos
e

e
ψ

θ
ψ

−
=

−
 

5. Compute radius vector 
( )21
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a e

r
e θ

−
=

+
 

6. Compute Perifocal coordinates , , 0X Y Zω ω ω =  from cos

sin

X r

Y r
ω

ω

θ

θ

=

=

 

7. Transform , , 0X Y Zω ω ω =  Perifocal coordinates to , ,C C CX Y Z  Geocentric–equatorial 

coordinates using C ω=x Rx  or 
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 (93) 

 Note that the rotation matrix R has been derived in the following manner.  Referring 

to Figure 17, the , ,C C CX Y Z  axes can be rotated into the , ,X Y Zω ω ω  by the following 

sequence of rotations: 

(i) rotation about CZ  by angle Ω  producing , ,C C CX Y Z′ ′ ′  or C CΩ′ =x R x  where 

cos sin 0

sin cos 0

0 0 1
Ω

⎡ ⎤Ω Ω⎢ ⎥
⎢ ⎥

= − Ω Ω⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

R  and CX ′  axis points toward ascending node. 

(ii) rotation about CX ′  by angle ι  producing , ,C C CX Y Z′′ ′′ ′′  or C Cι′′ ′=x R x  where 

1 0 0

0 cos sin

0 sin cos
ι ι ι

ι ι

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

R  and -C CX Y′′ ′′  plane is the orbital plane. 

(iii) rotation about CZ ′′  by angle ω  producing , ,C C CX Y Z′′′ ′′′ ′′′  or C Cω′′′ ′′=x R x  where 

cos sin 0

sin cos 0

0 0 1
ω

ω ω

ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

R  and CX ′′′  points through perigee. 

The , ,C C CX Y Z′′′ ′′′ ′′′  system is coincident with the , ,X Y Zω ω ω  system and the 

transformation can be written as Cω ω ι Ω=x R R R x  or Cω ωιΩ=x R x .  The rotation 
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matrix ωιΩR  is orthogonal, hence its inverse is equal to its transpose, and we may 

write the transformation T
C ωι ωΩ=x R x  or C ω=x R x  where T

ωιΩ=R R  

alternative procedure for steps 6 and 7 

In step 7, the transformation from , , 0X Y Zω ω ω =  Perifocal coordinates to , ,C C CX Y Z  

Geocentric–equatorial coordinates can be written as 
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and substituting cosX rω θ=  and sinY rω θ=  and gathering terms gives 
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cos cos sin sin sin cos sin sin cos cos cos

cos sin sin cos sin

C

C

C

X r r

Y r r

Z r

θ ω θ ω θ ω θ ω ι

θ ω θ ω θ ω θ ω ι

θ ω θ ω ι

= − Ω− + Ω

= − Ω+ + Ω

= +

 

Using the trigonometric addition formula ( )cos cos cos sin sinω θ ω θ ω θ+ = −  and 

( )sin sin cos cos sinω θ ω θ ω θ+ = +  gives 

 

( ) ( )

( ) ( )

( )

cos cos sin cos sin

cos sin sin cos cos

sin sin

C

C

C

X r r

Y r r

Z r

ω θ ω θ ι

ω θ ω θ ι

ω θ ι

= + Ω− + Ω

= + Ω+ + Ω

= +

 

Introducing an orbit–plane coordinate system , , 0P P PX Y Z =  where the PX -axis points in 

the direction of the ascending node and the -P PX Y  plane is the satellite orbital plane with 

the PY -axis advanced 90D  in the direction of orbital motion; the angle u ω θ= +  called 

the argument of latitude (measured in the plane of the orbit from the line of the nodes) 

allows the alternative steps, denoted 6* and 7*: 

6*. Compute orbit–plane coordinates , , 0P P PX Y Z =  from cos , sinP PX r u Y r u= =  

where the argument of latitude u ω θ= +  

7*. Transform orbit plane coordinates , , 0P P PX Y Z =  to Geocentric–equatorial 

coordinates , ,C C CX Y Z  using  

 

cos cos sin

sin cos cos

sin

C P P

C P P

C P

X X Y

Y X Y

Z Y

ι

ι

ι

= Ω− Ω

= Ω+ Ω

=

 (94) 
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T T TX ,Y ,Z  TERRESTRIAL COORDINATES AT TIME kt  USING 

KEPLERIAN ORBITAL ELEMENTS 

Using the procedure outlined above, , ,C C CX Y Z  can be obtained from equation (94).  Now 

consider a rotation from the , ,C C CX Y Z  reference frame to the , ,T T TX Y Z  reference frame 

given by equation (92) which we may write as 

 

cos cos

sin cos
T C A C A

T C A C A

T C

X X Y

Y X Y

Z Z

λ λ

λ λ

= −

= +

=

 (95) 

Substituting equations (94) into equations (95) gives 

 

( ) ( )

( ) ( )

cos cos sin cos sin cos cos sin

cos cos sin sin sin cos cos cos

sin

T P P A P P A

T P P A P P A

T P

X X Y X Y

Y X Y X Y

Z Y

ι λ ι λ

ι λ ι λ

ι

= Ω− Ω − Ω+ Ω

= Ω− Ω + Ω+ Ω

=

 

Expanding and gathering terms gives 

 

( ) ( )

( ) ( )

cos cos sin sin cos sin cos cos sin

cos sin sin cos cos cos cos sin sin

sin

T P A A P A A

T P A A P A A

T P

X X Y

Y X Y

Z Y

λ λ ι λ λ

λ λ ι λ λ

ι

= Ω − Ω − Ω + Ω

= Ω − Ω − Ω − Ω

=

 

Using the trigonometric addition formula ( )cos cos cos sin sinA A Aλ λ λΩ+ = Ω − Ω  and 

( )sin sin cos cos sinA A Aλ λ λΩ+ = Ω + Ω  gives the transformation from the orbit–plane 

coordinate system , , 0P P PX Y Z =  to the Conventional Terrestrial coordinates as 

 

( ) ( )

( ) ( )

cos cos sin

sin cos cos

sin

T P A P A

T P A P A

T P

X X Y

Y X Y

Z Y

λ ι λ

λ ι λ

ι

= Ω+ − Ω+

= Ω+ + Ω+

=

 (96) 

where ( )24 GST 15h
Aλ = − ×  is the longitude of the First Point of Aries (in degrees), ι  is 

the inclination of the orbit plane and Ω  is the Right Ascension of the ascending node.  

The orbit-plane coordinates , , 0P P PX Y Z =  are computed from step 6* of the procedure for 

computing , ,C C CX Y Z  coordinates outline above. 
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Equations (96) can be further simplified by substituting the longitude of the ascending 

node N Aλ λ= +Ω  from equation (90) to give 

 

cos cos sin

sin cos cos

sin

T P N P N

T P N P N

T P

X X Y

Y X Y

Z Y

λ ι λ

λ ι λ

ι

= −

= +

=

 (97) 
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APPENDIX:  Vectors 

Vectors are very useful for describing various physical quantities or relationships such as 

force, velocity, acceleration, distance between objects, etc., that have both magnitude and 

direction.  Vectors are represented by arrows between points or analytically by symbols 

such as OP
JJJG

, or boldface characters A or a.  The magnitude of a vector is denoted by 

,  or OP A a
JJJG

 but it is also common to use A or a to represent the magnitude of vectors A 

or a. 

A scalar, on the other hand, is a quantity having magnitude but no direction, e.g., mass, 

length, time, temperature and any real number. 

Laws of Vector Algebra:  If A, B and C are vectors and m and n are scalars then 

 1. + = +A B B A  Commutative law for Addition 

 2. ( ) ( )+ + = + +A B C A B C  Associative law for Addition 

 3. m m=A A  Commutative law for Multiplication 

 4. ( ) ( )m n mn=A A  Associative law for Multiplication 

 5. ( )m n m n+ = +A A A  Distributive law 

 6. ( )m m m+ = +A B A B  Distributive law 

A unit vector is a vector having unit magnitude (a magnitude of one).  Unit vectors are 

denoted by ˆ ˆ or A a  and 

 ˆ
A

= =
A AA
A

 

Any vector A can be represented by a unit vector Â  in the direction of A multiplied by 

the magnitude of A.  That is, ˆA=A A  

In an x,y,z Cartesian reference frame, the vector 

 1 2 3A A A= + +A i j k  

has component vectors 1A i , 2A j  and 3A k  in the x, y and z directions respectively, where i, 

j and k are unit vectors in the x, y and z directions.  1 2 3,  and A A A  are scalar components.  

The magnitude of A is 

 2 2 2
1 2 3A A A A= = + +A  
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The unit vector of A is 

 1 2 3ˆ A A A
A A A A

= = = + +
A AA i j k
A

 

The scalar product (or dot product) of two vectors 1 2 3A A A= + +A i j k  and 

1 2 3B B B= + +B i j k  is defined as the product of the magnitudes of A and B multiplied by 

the cosine of the angle between them, or 

 cos cosABθ θ= =A B A Bi  

and 

 ( ) ( )1 2 3 1 2 3 1 1 2 2 3 3A A A B B B AB A B A B= + + + + = + +A B i j k i j ki i  

Note that A Bi  is a scalar and not a vector. 

The following laws are valid for scalar products: 

 1. =A B B Ai i  Commutative law 

 2. ( )+ = +A B C A B A Ci i i  Distributive law 

 3. ( ) ( ) ( )m m m= =A B A B A Bi i i  where m is a scalar 

 4. 1; 0= = = = = =i i j j k k i j j k k ii i i i i i  

 5. 2 2 2 2
1 2 3a a a a= = + +A Ai  

 6. If 0=A Bi , and A and B are not null vectors then A and B are perpendicular. 

The vector product (or cross product) of two vectors 1 2 3A A A= + +A i j k  and 

1 2 3B B B= + +B i j k  is a vector = ×P A B  where P is a vector perpendicular to the plane 

containing A and B.  The magnitude of P is defined as the product of the magnitudes of A 

and B multiplied by the sine of the angle between them.  The vector product is often 

expressed as 

 ˆ ˆsin sinABθ θ× = =A B A B P P  

where P̂  is a perpendicular unit vector and the direction of P is given by the right-hand-

screw rule, i.e., if A and B are in the plane of the head of a screw, then a clockwise 

rotation of A to B through an angle θ  would mean that the direction of P would be the 

same as the direction of advance of a right-handed screw turned clockwise. The cross 

product can be written as the expansion of a determinant as 
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( ) ( ) ( )

( ) ( ) ( )1 2 3 2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

A A A A B A B AB A B AB A B

B B B

+ +−

= × = = − − − + −P A B i j k

i j k
 

Note here that the mnemonics ( ) ( ) ( ), ,+ − +  are an aid to the evaluation of the 

determinant.  The perpendicular vector 1 2 3P P P= + +P i j k  has scalar components 

( )1 2 3 3 2P A B A B= − , ( )2 1 3 3 1P AB A B= − −  and ( )3 1 2 2 1P AB A B= − .  

 

The following laws are valid for vector products: 

 1. × = − ×A B B A  [Commutative law for cross products fails] 

 2. ( )× × = × + ×A B C A B A C  Distributive law 

 3. ( ) ( ) ( ) ( )m m m m× = × = × = ×A B A B A B A B  where m is a scalar 

 4. ; , ,× = × = × = × = × = × =i i j j k k 0 i j k j k i k i j  

 

Triple products 

Scalar and vector multiplication of three vectors A, B and C may produce meaningful 

products of the form ( )A B Ci , ( )×A B Ci  and ( )× ×A B C .  The following laws are valid: 

 1. ( ) ( )≠A B C A B Ci i  

 2. ( ) ( ) ( )× = × = ×A B C B C A C A Bi i i  (scalar triple products) 

 3. ( ) ( )× × ≠ × ×A B C A B C  

 4. ( ) ( ) ( )

( ) ( ) ( )

× × = −

× × = −

A B C A C B A B C

A B C A C B B C A

i i

i i

 (vector triple products) 

 

Differentiation of vectors 

If A, B and C are differentiable vector functions of a scalar u, and ϕ  is a differentiable 

scalar function of u, then 

 1. ( )
d d d
du du du

+ = +
A BA B  

 2. ( )
d d d
du du du

= +
B AA B A Bi i i  

 3. ( )
d d d
du du du

× = × + ×
B AA B A B  
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 4. ( )
d d d
du du du

ϕ
ϕ ϕ= +

AA A  

 5. ( ){ } ( )
d d d d
du du du du

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜× = × + × + ×⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
C B AA B C A B A C B Ci i i i  

 6. ( ){ } ( )
d d d d
du du du du

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜× × = × × + × × + × ×⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
C B AA B C A B A C B C  
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